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Abstract

Let I = [0, d), where d is finite or infinite. Let W� (x) = x� exp (−Q (x)), where � > − 1
2 and Q

is continuous and increasing on I, with limit ∞ at d. We obtain further bounds on the orthonormal
polynomials associated with the weight W2

� , finer spacing on their zeros, and estimates of their asso-
ciated fundamental polynomials of Lagrange interpolation. In addition, we obtain weighted Markov
and Bernstein inequalities.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction and results1

Let

I = [0, d), (1.1)

where 0 < d �∞. Let Q : I → [0, ∞) be continuous, and

W = exp (−Q) (1.2)
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be such that all moments
∫
I

xnW (x) dx, n�0, exist. We call W an exponential weight on
I. For � > − 1

2 , we set

W� (x) := x�W (x) , x ∈ I.

The orthonormal polynomial of degree n for W 2 is denoted by pn

(
W 2, x

)
or just pn (x).

That for W 2
� is denoted by pn

(
W 2

� , x
)

or just pn,� (x). Thus∫
I

pn,� (x) pm,� (x) x2�W 2 (x) dx = �mn

and

pn,� (x) = �n,�xn + · · · ,

where �n,� = �n

(
W 2

�

)
> 0.

In the predecessor to this paper [3], we established bounds for pn,�, estimates of the
associated Christoffel functions, spacing of the zeros of the orthonormal polynomials, and
restricted range inequalities. In this paper, we shall establish further bounds on the or-
thonormal polynomials, more precise spacing of their zeros, estimates for their fundamental
polynomials, and Markov–Bernstein inequalities. We denote the zeros of pn,� by

xnn < xn−1,n < · · · < x2n < x1n.

As in [3], we use results from [2] by defining an even weight W ∗ corresponding to the
one-sided weight W. Given I and W as in (1.1) and (1.2), let

I ∗ :=
(
−√

d,
√

d
)

and for x ∈ I ∗,

Q∗ (x) := Q
(
x2

)
,

W ∗ (x) := exp
(−Q∗ (x)

)
.

We say that f : I → (0, ∞) is quasi-increasing if there exists C > 0 such that

f (x) �Cf (y) , 0 < x < y < d.

Of course, any increasing function is quasi-increasing. The notation

f (x) ∼ g(x)

means that there are positive constants C1, C2 such that for the relevant range of x,

C1 �f (x)/g(x)�C2.

Similar notation is used for sequences and sequences of functions.
Throughout, C, C1, C2, . . . denote positive constants independent of n, x, t and polyno-

mials P of degree at most n. We write C = C(�), C �= C(�) to indicate dependence on,
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or independence of, a parameter �. The same symbol does not necessarily denote the same
constant in different occurrences. We denote the polynomials of degree �n by Pn.

Following is our class of weights:

Definition 1.1. Let W = e−Q where Q : I → [0, ∞) satisfies the following properties:

(a)
√

xQ′ (x) is continuous in I, with limit 0 at 0 and Q(0) = 0;

(b) Q′′ exists in (0, d), while Q∗′′ is positive in
(

0,
√

d
)

;

(c)

lim
x→d− Q (x) = ∞.

(d) The function

T (x) := xQ′(x)

Q(x)
, x ∈ (0, d) (1.3)

is quasi-increasing in (0, d), with

T (x)�� > 1
2 , x ∈ (0, d) . (1.4)

(e) There exists C1 > 0 such that∣∣Q′′(x)
∣∣

Q′(x)
�C1

Q′(x)

Q(x)
, a.e. x ∈ (0, d) . (1.5)

Then we write W ∈ L (
C2

)
. If also there exists a compact subinterval J of I ∗, and C2 > 0

such that

Q∗′′(x)

|Q∗′(x)| �C2
|Q∗′(x)|
Q∗(x)

, a.e. x ∈ I ∗\J, (1.6)

then we write W ∈ L (
C2+)

.

Remarks. See [3] for further orientation on this class of weights and this topic. Here are
some examples of Q that satisfy the above conditions:

(I)

Q(x) = x�, x ∈ [0, ∞),

where � > 1
2 .

(II)

Q(x) = expk(x
�) − expk(0), x ∈ [0, ∞),

where � > 1
2 and k�0. Here we set

exp0 (x) := x
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and for k�1,

expk (x) = exp(exp(exp · · · exp (x)) · · ·)︸ ︷︷ ︸
k times

is the kth iterated exponential.
(III) An example on the finite interval I = [0, 1) is

Q(x) = expk((1 − x)−�) − expk(1), x ∈ [0, 1),

where � > 0 and k�0.

One of the important descriptive quantities we need is the Mhaskar–Rakhmanov–Saff
number at , [2,4,5], defined for t > 0 as the positive root of the equation

t = 1

�

∫ 1

0

atuQ′ (atu)√
u (1 − u)

du. (1.7)

One of our main results is:

Theorem 1.2. Let � > − 1
2 , 0 < � < 1, and let W ∈ L (

C2+)
. Let pn,� (x) be the nth

orthonormal polynomial for the weight W 2
� . Then uniformly for n�1,

sup
x∈I

|pn,�(x)|W(x)
(
x + an

n2

)� ∼
(

n

an

)1/2

(1.8)

and

sup
x∈[a�n,d)

|pn,�(x)|W(x)
(
x + an

n2

)� ∼ a
−1/2
n (nT (an))

1/6 . (1.9)

If W ∈ L (
C2

)
, these estimates hold with ∼ replaced by �C.

Remark. In [3], we proved the estimate

sup
x∈I

|pn,�(x)|W(x)
(
x + an

n2

)� ∣∣∣(x + ann
−2

)
(an − x)

∣∣∣1/4 ∼ 1, (1.10)

assuming that W ∈ L (
C2

)
.

Next, we turn to pointwise bounds on orthogonal polynomials and their derivatives. Let

�t = (tT (at ))
−2/3 , t > 0 (1.11)

and

	t (x) :=

⎧⎪⎪⎨
⎪⎪⎩

√
x + at t−2 (a2t − x)

t
√

at − x + at�t

, x ∈ [0, at ] ,

	t (at ), x > at ,

	t (0) , x < 0.

(1.12)
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Recall that the fundamental polynomials at the zeros of pn,� are polynomials �jn ∈ Pn−1
satisfying

�jn(xkn) = �kj .

Theorem 1.3. Let W ∈ L (
C2+)

and � > − 1
2 . There exists n0 such that uniformly for

n�n0, 1�j �n,

(a)

|p′
n,�W�|(xjn) ∼ 	n(xjn)

−1 [xjn

(
an − xjn

)]−1/4 ; (1.13)

(b)

|pn−1,�W�|(xjn) ∼ a−1
n

[
xjn

(
an − xjn

)]1/4 ; (1.14)

(c)

max
x∈I

∣∣∣�jn(x)W(x)
(
x + an

n2

)�∣∣∣W−1
� (xjn) ∼ 1; (1.15)

(d) For j �n − 1 and x ∈ [xj+1,n, xjn],∣∣pn,�W�
∣∣ (x) ∼ min{∣∣x − xjn

∣∣ , ∣∣x − xj+1,n

∣∣}
×	n(xjn)

−1 [xjn

(
an − xjn

)]−1/4
. (1.16)

If we assume instead that W ∈ L (
C2

)
, then (a) holds with ∼ replaced by �C and (b) holds

with ∼ replaced by �C.

Concerning the spacing of the zeros, we prove

Theorem 1.4. Let W ∈ L (
C2+)

and � > − 1
2 . Uniformly for n�1 and 1�j < n,

xjn − xj+1,n ∼ 	n(xjn). (1.17)

In [3], we proved the upper bound implicit in (1.17), assuming that W ∈ L (
C2

)
.

Finally, we turn to Markov–Bernstein inequalities. For these, we need a modification of
	t , namely

	#
t (x) =

√
x

x + at t−2 	t (x) =
√

x (a2t − x)

t
√

at − x + at�t

, x ∈ [0, at ] (1.18)

and

	#
t (x) = 	#

t (at ) , x > at . (1.19)

Theorem 1.5 (Bernstein inequality). Let W ∈ L (
C2

)
. Let 0 < p�∞ and let � > − 1

p
if

p < ∞ and ��0 if p = ∞. Then for n�1 and P ∈ Pn, and for some C �= C(n, P ),

‖(PW)′ (x) 	#
n (x) x�‖Lp(I) �C‖ (PW) (x) x�‖Lp(I). (1.20)
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Theorem 1.6 (Markov inequality). Let W ∈ L (
C2

)
. Let 0 < p�∞, 0 < � < 1. Let

� > − 1
p

if p < ∞ and ��0 if p = ∞. Then for n�1 and P ∈ Pn,

‖ (P ′W
)
(x) x�‖Lp(I) �C

n2

an

‖ (PW) (x) x�‖Lp(I) (1.21)

and

‖ (P ′W
)
(x) x�‖Lp[a�n,d) �C

n

an

√
T (an)‖ (PW) (x) x�‖Lp(I). (1.22)

Since T (an) << n2, we see from the last two inequalities, the special role played by 0:
the rate of growth of P ′W can be far larger near 0 than near an. We shall show that (1.21)
is sharp as regards the rate of growth in n, at least in L2 and for � = 0. More precisely, in
Section 7, we show that

‖p′′
nW‖L2(I ) ∼ n2

an

‖p′
nW‖L2(I ), n�1. (1.23)

We note that all the above results are valid under weaker conditions on W. All we need is
that W ∗ satisfies the conditions for the corresponding result in [2]. However, for simplicity,
we use just one class of weights in this paper. We note too that for the case where Q is of
polynomial growth on I = [0, ∞), Theorems 1.3 and 1.4 follow from results of Kasuga
and Sakai [1].

This paper is organized as follows. In the next section, we list technical estimates. In
Section 3, we prove the Markov–Bernstein inequalities of Theorems 1.5 and 1.6. In Section
4, we estimate a certain function A#

n,� (x). In Section 5, we prove Theorems 1.2 and 1.3(a),
(b). In Section 6, we prove Theorems 1.3(c), (d) and 1.4. Finally in Section 7, we prove
(1.23).

Finally, we illustrate some of the results above on specific weights. Throughout p, �, �
are as in Theorem 1.6.

Example 1. Let I = [0, ∞), � > 1
2 and

Q(x) = x�, x ∈ [0, ∞).

In this special case

at =
(

√
�

� (�)

�
(
� + 1

2

)
)1/�

t1/�

and

�t = (�t)−2/3 , t > 0.

(I) The Markov inequality takes the following form: for n�1 and P ∈ Pn,

‖ (P ′W
)
(x) x�‖Lp(0,∞) �Cn2− 1

� ‖ (PW) (x) x�‖Lp(0,∞).
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Moreover, given 0 < � < 1,

‖ (P ′W
)
(x) x�‖Lp(a�n,∞)�Cn1− 1

� ‖ (PW) (x) x�‖Lp(0,∞).

(II) The sup norm bound on the orthonormal polynomials takes the form∥∥∥pn,� (x) W (x)
(
x + an

n2

)�∥∥∥
L∞(0,∞)

∼ n
1
2

[
1− 1

�

]
.

Moreover,∥∥∥pn,� (x) W (x)
(
x + an

n2

)�∥∥∥
L∞(a�n,∞)

∼ n− 1
2� + 1

6 .

Example 2. Let I = [0, ∞), k�1 and � > 1
2 . Let

Q(x) = expk(x
�) − expk(0), x ∈ [0, ∞).

We also need the jth iterated logarithm: let log0 (x) := x and for j �1,

logj (x) = log(log(log · · · log (x)))︸ ︷︷ ︸
j times

, x > expj−1 (0) .

Here as n → ∞,

an = (
logk n

)1/�
(1 + o (1)) ,

T (an) ∼
k∏

j=1

logj n,

�n ∼
⎛
⎝n

k∏
j=1

logj n

⎞
⎠−2/3

.

(I) The Markov inequality takes the following form: for n� expk (1) and P ∈ Pn,

‖ (P ′W
)
(x) x�‖Lp(0,∞) �C

n2(
logk n

)1/� ‖ (PW) (x) x�‖Lp(0,∞).

Moreover, for n� expk (1),

‖ (P ′W
)
(x) x�‖Lp(a�n,∞)

�C
n(

logk n
)1/�

⎛
⎝ k∏

j=1

logj n

⎞
⎠1/2

‖ (PW) (x) x�‖Lp(0,∞).
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(II) The sup norm bound on the orthonormal polynomials takes the form∥∥∥pn,� (x) W (x)
(
x + an

n2

)�∥∥∥
L∞(0,∞)

∼ n1/2 (logk n
)−1/(2�)

.

Moreover, for n� expk (1),

∥∥∥pn,� (x) W (x)
(
x + an

n2

)�∥∥∥
L∞(a�n,∞)

∼ (
logk n

)−1/(2�)

⎛
⎝n

k∏
j=1

logj n

⎞
⎠1/6

.

Example 3. Let I = [0, 1), � > 0, and

Q (x) = (1 − x)−� − 1, x ∈ [0, 1).

Here

1 − an ∼ n
−
(

1
�+ 1

2

)
,

T (an) ∼ n

1
�+ 1

2 ,

�n ∼ n
− 2

3

(
2�+3
2�+1

)
.

(I) The Markov inequality takes the following form: for n�1 and P ∈ Pn,

‖ (P ′W
)
(x) x�‖Lp[0,1] �Cn2‖ (PW) (x) x�‖Lp[0,1].

Moreover, given 0 < � < 1,

‖ (P ′W
)
(x) x�‖Lp[a�n,1] �Cn

2�+2
2�+1 ‖ (PW) (x) x�‖Lp[0,1].

(II) The sup norm bound on the orthonormal polynomials takes the form∥∥∥pn,� (x) W (x)
(
x + an

n2

)�∥∥∥
L∞[0,1]

∼ n
1
2 .

Moreover,∥∥∥pn,� (x) W (x)
(
x + an

n2

)�∥∥∥
L∞[a�n,1]

∼ n
2�+3
2�+1

1
6 .

Example 4. Let I = [0, 1), k�1 and � > 0. Let

Q(x) = expk((1 − x)−�) − expk(1), x ∈ [0, 1).
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Here as n → ∞,

1 − an = (
logk n

)−1/�
(1 + o (1)) ,

T (an) ∼ (
logk n

)1+1/�
k−1∏
j=1

logj n,

�n ∼
⎛
⎝n

(
logk n

)1+1/�
k−1∏
j=1

logj n

⎞
⎠−2/3

.

(I) The Markov inequality takes the following form: assume that p, � are as above. Then
for n�1 and P ∈ Pn,

‖ (P ′W
)
(x) x�‖Lp[0,1] �Cn2‖ (PW) (x) x�‖Lp[0,1].

Moreover,

‖ (P ′W
)
(x) x�‖Lp[a�n,1]

�Cn

⎛
⎝(

logk n
)1+1/�

k−1∏
j=1

logj n

⎞
⎠1/2

‖ (PW) (x) x�‖Lp[0,1].

(II) The sup norm bound on the orthonormal polynomials takes the form∥∥∥pn,� (x) W (x)
(
x + an

n2

)�∥∥∥
L∞[0,1]

∼ n1/2.

Moreover,

∥∥∥pn,� (x) W (x)
(
x + an

n2

)�∥∥∥
L∞[a�n,1]

∼
⎛
⎝n

(
logk n

)1+1/�
k−1∏
j=1

logj n

⎞
⎠1/6

.

2. Technical estimates

The classes L (
C2

)
and L (

C2+)
are defined in such a way that W ∗ becomes part of the

corresponding classes F (
C2

)
and F (

C2+)
in [2, p. 7]. In [3, Lemma 2.2] we proved that

W ∈ L
(
C2

)
⇔ W ∗ ∈ F

(
C2

)
and

W ∈ L
(
C2+

)
⇔ W ∗ ∈ F

(
C2+

)
.
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Thus we can apply results from [2] to W ∗. We denote the (positive) Mhaskar–Rakhmanov–
Saff number for W ∗ by a∗

t . In [3, Eq. (2.6)] we showed that

at/2 = a∗2
t . (2.1)

We shall also use the quantity �t = (tT (at ))
−2/3, and its analogue for Q∗

�∗
t = {

tT ∗ (a∗
t

)}−2/3
,

where

T ∗ (x) = x
Q∗′ (x)

Q∗ (x)
= 2T

(
x2

)
.

We note that [3, (2.9)]

�∗
2t = 4−2/3�t . (2.2)

Lemma 2.1. Let W ∈ L (
C2

)
.

(a) Uniformly for t > 0, we have

Q′(at ) ∼ t

at

√
T (at ). (2.3)

(b) For fixed L > 1 and uniformly for t > 0,

aLt ∼ at . (2.4)

(c) Fix L > 0. Then uniformly for t > 0,

Q′(aLt ) ∼ Q′(at ), T (aLt ) ∼ T (at ) and �Lt ∼ �t . (2.5)

(d) For some ε > 0, and for large enough t,

T (at )�Ct2−ε (2.6)

and

�t T (at )�Ct−ε = o(1). (2.7)

Proof. See [3, Lemma 3.1]. �

Some further estimates involving at :

Lemma 2.2. Let W ∈ L (
C2

)
.

(a) We have for t > 0,∣∣∣∣1 − at

as

∣∣∣∣ ∼ 1

T (at )

∣∣∣∣1 − t

s

∣∣∣∣ , 1

2
� s

t
�2. (2.8)
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(b) Given fixed L > 1, we have uniformly for t > 0,∣∣∣∣1 − aLt

at

∣∣∣∣ ∼ 1

T (at )
. (2.9)

(c) For x ∈ [0, at ),

Q′(x)� Ct√
x (at − x)

. (2.10)

(d) Assume also W ∈ L (
C2+)

and let L > 1. There exist C and t0 such that for t � t0,

aLtQ
′ (aLt )

atQ′ (at )
�1 + C. (2.11)

Proof. (a), (b) See [3, Lemma 3.2].
(c) See [3, Lemma 3.3].
(d) Note that (cf. (2.1))

√
aLtQ

′ (aLt )√
atQ′ (at )

= Q∗′ (a∗
2Lt

)
Q∗′ (a∗

2t

) �1 + C

by Proposition 13.1 in [3, pp. 359–360]. Since aLt �at , we then obtain (2.11). �

Next, a lemma on the functions 	m and 	#
m. We shall also sometimes need the corre-

sponding function for W ∗, which we denote by 	∗
m. This is defined in

[−a∗
m, a∗

m

]
[2, p. 19]

by

	∗
m (x) =

∣∣x2 − a2∗
2m

∣∣
m

√∣∣x + a∗
m

∣∣ + a∗
m�∗

m

√∣∣x − a∗
m

∣∣ + a∗
m�∗

m

(2.12)

and to be constant in (−∞, −a∗
m] and [a∗

m, ∞).

Lemma 2.3. Let W ∈ L (
C2

)
.

(a) For x ∈ [0, am],

	∗
2m

(√
x
) ∼ 	m (x)√

x + amm−2
= 	#

m (x)√
x

. (2.13)

(b) Let C > 0. Uniformly for m and n such that∣∣∣1 − m

n

∣∣∣ �CT (an) �n, (2.14)

we have uniformly for x ∈ I

	n (x) ∼ 	m (x) . (2.15)

Moreover, uniformly for x ∈ I ∗,

	∗
n (x) ∼ 	∗

m (x) . (2.16)
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(c) For n�1 and x ∈ [ann
−2, d),

	#
n (x) �Cx. (2.17)

(d) Let L > 0, 0 < � < 1. Then uniformly for n�1 and x ∈ [
an/n2, a�n

]
,

	n (x)
[
x
(
an

[
1 + L�n

] − x
)]1/2 ∼ x(an − x)

n
. (2.18)

(e) Let ε ∈ (0, 1), L > 0. Then uniformly for n�1 and x ∈ [
aεn, an

(
1 + L�n

)]
,

	n (x)
[
x
(
an

[
1 + L�n

] − x
)]1/2 ∼ a2

n

nT (an)
∼ x(azn − x)

n
. (2.19)

(f) Uniformly for n�1, 1�j �n − 1, and x ∈ [
xj+1,n, xjn

]
,

	n

(
xjn

) ∼ 	n (x) . (2.20)

Proof. (a) Since a∗2
2m = am, we see that in [0, am],

	∗
2m

(√
x
)= |x − a2m|

m

√∣∣√x + √
am

∣∣ + √
am�∗

2m

√∣∣√x − √
am

∣∣ + √
am�∗

2m

∼ a2m − x

m
√

am − x + am�m

∼ 	m (x)√
x + amm−2

= 	#
m (x)√

x
,

by (1.12) and (1.18).
(b) Firstly [2, Lemma 9.7, p. 264] gives (2.16). Using (a), we obtain in [0, an],

	m (x)√
x + amm−2

∼ 	n (x)√
x + ann−2

.

Here (2.14) and (2.7) show that 1 − m
n

→ 0, n → ∞. Hence m ∼ n, so am ∼ an. Then
(2.15) follows in [0, an]. Since we may assume m�n and 	n and 	m are constant outside
[0, an] and [0, am], respectively, we obtain (2.15) in I.

(c) Now in [0, an], we see from (1.18) and then (2.9), (2.7) that

	#
n (x)

x
∼ a2n − x

n
√

x
√

an − x + an�n

∼

⎧⎪⎪⎨
⎪⎪⎩

√
an − x

n
√

x
, x ∈ [

0, an/2
]
,

√
an

nT (an)
√

an − x + an�n

, x ∈ [
an/2, an

]

� C

⎧⎪⎪⎨
⎪⎪⎩

√
an

n
√

x
, x ∈ [

0, an/2
]
,

1

nT (an)
√

�n

, x ∈ [
an/2, an

]
� C, x ∈

[
ann

−2, an

]
, (2.21)



E. Levin, Doron Lubinsky / Journal of Approximation Theory 139 (2006) 107–143 119

recall that �n = (nT (an))
−2/3 = o (1). Since 	#

n (x) = 	#
n (an), x�an, this inequality

persists in [an, d).
(d) For this range of x,

|x − a2n| ∼ |x − an| and an − x + an�n ∼ an − x,

while x + an/n2 ∼ x, so (2.18) follows easily from (1.12).
(e) For this range of x,

|x − a2n| ∼ an

T (an)
and x ∼ an

and so at least in [0, an],

	n (x) ∼ a
3/2
n

nT (an)

1√
an − x + ann−2

,

whence

	n (x)
[
x
(
an

[
1 + 2L�n

] − x
)]1/2 ∼ a2

n

nT (an)
.

This persists in
[
an, an

(
1 + L�n

)]
, since 	n is constant there.

This follows from (7.14) (and its preceding lines) and Lemma 4.3 in [3]. �

Next, we restate some restricted range inequalities from [3]. For t �0, we denote by Pt

the set of all functions of the form

P(z) = c exp

(∫
log |z − 
| d�(
)

)
,

where ��0, � (C) � t , c�0, and the support of � is compact. These are the exponentials of
potentials of measures of mass � t . In particular if t �n, then P ∈ Pn ⇒ |P | ∈ Pt .

Lemma 2.4. Let W ∈ L (
C2

)
. Let 0 < p�∞, � ∈ R, and L, ��0. Let � > − 1

p
if p < ∞

and ��0 if p = ∞.

(a) There exist C1, t0 such that for t � t0 and P ∈ Pt ,

‖ (PW) (x) x�‖Lp(I) �C1‖ (PW) (x) x�‖Lp[Lat t−2,at (1−��t )]. (2.22)

(b) Given r > 1, we have for some C, t0, � > 0 and t � t0, and P ∈ Pt ,

‖ (PW) (x) x�‖Lp(art ,d) � exp
(−Ct�

) ‖ (PW) (x) x�‖Lp(0,at ). (2.23)

(c) There exist C1, t0 > 0 such that for t � t0 and P ∈ Pt ,∥∥∥(PW) (x)
(
x + at

t2

)�∥∥∥
Lp(I)

�C1

∥∥∥(PW) (x)
(
x + at

t2

)�∥∥∥
Lp[Lat t−2,at (1−��t )]

. (2.24)
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Proof. (a), (b) See [3, Theorem 5.2].
(c) In [3, Lemma 8.7], we proved that∥∥∥(PW) (x)

(
x + at

t2

)�∥∥∥
Lp(I)

�C1

∥∥∥(PW) (x)
(
x + at

t2

)�∥∥∥
Lp[Lat t−2,a2t (1−��2t )]

.

So it suffices to estimate ‖ (PW) (x)
(
x + at

t2

)� ‖Lp[at (1−��t ),a2t (1−��2t )]. We see that it is

bounded by a constant times ‖ (PW) (x) x�‖Lp[at (1−��t ),a2t (1−��2t )] and if ��0, we can
apply (a) of this lemma to deduce (2.24). If instead � < 0, we use

‖ (PW) (x) x�‖Lp[at (1−��t ),a2t (1−��2t )]
�Ca�

t ‖ (PW) (x) ‖Lp[at (1−��t ),a2t (1−��2t )]
�Ca�

t ‖ (PW) (x) ‖Lp[Lat t−2,at (1−��t )]
�C

∥∥∥(PW) (x)
(
x + at

t2

)�∥∥∥
Lp[Lat t−2,at (1−��t )]

,

by first (a) of this lemma and then as � < 0. �

Finally, we need polynomials that behave like x�:

Lemma 2.5. Let � ∈ R and L ∈ (0, 1). For n�1, there exist polynomials Rn of degree
�n such that

Rn (x) ∼
(
x + an

n2

)�
, x ∈ [0, a2n] , (2.25)

∣∣R′
n (x)

∣∣ �Cx�−1, x ∈
[
Lann

−2, a2n

]
. (2.26)

Proof. See [3, Lemma 6.3]. �

3. Markov–Bernstein inequalities

We begin by proving:

Lemma 3.1. Let k be a non-negative integer and 0 < p�∞. Let W ∈ L (
C2

)
. Then for

n�1 and P ∈ Pn,

‖ (PW)′ (y) 	#
n (y) y

k
2 − 1

2p ‖Lp(I) �C‖ (PW) (y) y
k
2 − 1

2p ‖Lp(I). (3.1)

Proof. Let us suppose that p < ∞, (p = ∞ is simpler) and let

R (x) := xkP
(
x2

)
.

By [2, Theorem 10.1(a), p. 293],

‖ (RW ∗)′ 	∗
2n+k‖Lp(I∗) �C‖RW ∗‖Lp(I∗).
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Since (
RW ∗)′ (x) = 2xk+1 (PW)′

(
x2

)
+ kxk−1 (PW)

(
x2

)
,

we obtain after a substitution x = √
y,∫

I

∣∣∣2y
k+1

2 (PW)′ (y) + ky
k−1

2 (PW) (y)

∣∣∣p 	∗
2n+k

(√
y
)p dy√

y

�C

∫
I

|PW |p (y) y
kp
2

dy√
y

. (3.2)

Here by Lemma 2.3(b),

	∗
2n+k

(√
y
) ∼ 	∗

2n

(√
y
)
,

while by Lemma 2.3(a),

	∗
2n

(√
y
) ∼ 	n (y)√

min {y, an} + ann−2
∼ 	#

n (y)√
min {y, an} , (3.3)

uniformly for n�1 and y ∈ I . (For y�an, this follows by constancy of 	n and so on.)
Then we obtain from (3.2) and (3.3) that∫

I

∣∣∣(PW)′ 	#
n (y)

∣∣∣p y
kp−1

2 dy

�C

∫
I

∣∣∣y k+1
2 (PW)′ (y) 	∗

2n+k

(√
y
)∣∣∣p dy√

y

�C

∫
I

|PW |p (y) y
kp−1

2 dy

+ Ckp

∫
I

|PW |p (y) y
kp−1

2

(
	#

n (y)√
y
√

min {y, an}
)p

dy

�C

∫
I

|PW |p (y) y
kp−1

2 dy

+ Ckp

∫ ann−2

0
|PW |p (y) y

kp−1
2

(
	#

n (y)

y

)p

dy (3.4)

by Lemma 2.3(c), and since 	#
n (y) = 	#

n (an), y�an. Of course if k = 0, the second term
vanishes. We now assume that k�1. From (2.21) in the proof of Lemma 2.3(c), we see that∫ ann−2

0
|PW |p (y) y

kp−1
2

(
	#

n (y)

y

)p

dy

�C

∫ ann−2

0
|PW |p (y) y

kp−1
2

(√
an

n
√

y

)p

dy

�C

∫ an

ann−2
|PW |p (y) y

kp−1
2

(√
an

n
√

y

)p

dy,

by our restricted range inequality Lemma 2.4(a). This is applicable since k�1, so that

kp − 1

2
− p

2
� − 1

2
> −1.



122 E. Levin, Doron Lubinsky / Journal of Approximation Theory 139 (2006) 107–143

We continue this as∫ ann−2

0
|PW |p (y) y

kp−1
2

(
	#

n (y)

y

)p

dy�C

∫ an

ann−2
|PW |p (y) y

kp−1
2 dy.

This and (3.4) give the result. �

Now we can prove a preliminary form of Theorem 1.5. There are no restrictions on the
power x� here, so the result has some independent interest.

Theorem 3.2. Let 0 < p�∞, L > 0 and � ∈ R. Let W ∈ L (
C2

)
. Then for n�1 and

P ∈ Pn, and for some C �= C(n, P ),

‖(PW)′ (x) 	#
n (x) x�‖Lp(Lann−2,d) �C‖ (PW) (x) x�‖Lp(ann−2,an). (3.5)

Proof. Assume p < ∞. The case p = ∞ is easier. We split∫ d

Lann−2

∣∣∣(PW)′ 	#
n

∣∣∣p (y) y�p dy

=
(∫ 1

2 an

Lann−2
+
∫ d

1
2 an

) ∣∣∣(PW)′ 	#
n

∣∣∣p (y) y�p dy

=: I1 + I2.

Choose � ∈ R such that

�p = − 1
2 + �p

and let {Rn} be the polynomials from Lemma 2.5, satisfying (2.25) and (2.26). Note that
PRn has degree at most 2n. We see that

I1 =
∫ 1

2 an

Lann−2

∣∣∣(PW)′ 	#
n

∣∣∣p (y) y�p dy

� C

∫ 1
2 an

Lann−2

∣∣∣(PW)′ 	#
n

∣∣∣p (y) R
p
n (y) y− 1

2 dy

= C

∫ 1
2 an

Lann−2

∣∣∣[(PRnW)′ − PWR′
n

]
	#

n

∣∣∣p (y) y− 1
2 dy

� C

∫ 1
2 an

Lann−2

∣∣∣(PRnW)′ 	#
2n

∣∣∣p (y) y− 1
2 dy

+C

∫ 1
2 an

Lann−2

∣∣∣PWR′
n	

#
n

∣∣∣p (y) y− 1
2 dy

� C

∫
I

|PRnW |p (y) y−1/2 dy

+C

∫ 1
2 an

Lann−2
|PW |p (y)

(
	#

n (y)

y

)p

y�p dy,
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by Lemma 3.1 with k = 0, since 	#
2n ∼ 	#

n in
[
ann

−2, 1
2an

]
and by (2.26). Using our

restricted range inequality Lemma 2.4(a) and using (2.25) and (2.17), we can continue this
as

I1 �C

∫ a2n

Lann−2
|PW |p (y) y�p dy.

Lemma 2.4(c) allows us to continue this as

I1 �C

∫ an

ann−2
|PW |p (y) y�p dy. (3.6)

Next, to handle I2, we choose a positive integer k so large that

� := �p − kp − 1

2
< 0.

Then

I2 =
∫ d

1
2 an

∣∣∣(PW)′ 	#
n

∣∣∣p (y) y�p dy

�
(

1

2
an

)� ∫ d

1
2 an

∣∣∣(PW)′ 	#
n

∣∣∣p (y) y
kp−1

2 dy

� C

(
1

2
an

)� ∫
I

|PW |p (y) y
kp−1

2 dy,

by Lemma 3.1. Using our restricted range inequality Lemma 2.4(a), and � < 0, we continue
this as

I2 � C

(
1

2
an

)� ∫ an

ann−2
|PW |p (y) y

kp−1
2 dy

� C

∫ an

ann−2
|PW |p (y) y�p dy.

Together this and (3.6) give (3.5). �

Proof of Theorem 1.6. Let P ∈ Pn. We shall use Theorem 3.2 and treat P as a polynomial
of degree �2n. First write∣∣(P ′W

)
(x)

∣∣ x� �
∣∣∣(PW)′ (x) 	#

2n (x) x�
∣∣∣	#

2n (x)−1 +
∣∣∣(PW) (x) x�

∣∣∣Q′ (x) .

(3.7)

Here in
[
ann

−2, an

]
,

	#
2n (x) =

√
x

2n

a4n − x√
a2n − x + a2n�2n

�C	#
2n

(
ann

−2
)

∼ an

n2 ,

note that by (2.9) and (2.6),

a4n − x ∼ a2n − x + a2n�2n �a2n − an ∼ an

T (an)
� an

n2 .
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Also by (2.10), in
[
ann

−2, an

]
,

Q′ (x) � Cn√
x (a2n − x)

�C max

{
n2

an

,
n
√

T (an)

an

}
∼ n2

an

,

by (2.6). Our restricted range inequality Lemma 2.4(a), followed by (3.7), give

‖ (P ′W
)
(x) x�‖Lp(I) �C‖ (P ′W

)
(x) x�‖Lp[ann−2,an]

�C
n2

an

(
‖ (PW)′ (x) 	#

2n (x) x�‖Lp[ann−2,an] + ‖ (PW) (x) x�‖Lp[ann−2,an]

)
�C

n2

an

‖ (PW) (x) x�‖Lp(I),

by Theorem 3.2. Thus we have (1.21). The proof of (1.22) is similar: in [a�n, d),

	#
2n (x) ∼ 	2n (x) �C	2n

(
a�n

) ∼ an

n
√

T (an)

while in
[
a�n, an

]
(cf. (2.3)),

Q′ (x) ∼ Q′ (an) ∼ n

an

√
T (an). �

Finally, we turn to:

Proof of Theorem 1.5. In view of Theorem 3.2, we need only estimate the norm over(
0, ann

−2
)
. Now

‖ (PW)′ (x) 	#
n (x) x�‖Lp(0,ann−2)

�C
[
‖ (P ′W

)
(x) 	#

n (x) x�‖Lp(0,ann−2)

+‖ (PW) (x) Q′ (x) 	#
n (x) x�‖Lp(0,ann−2)

]
=: C [I1 + I2] .

Note that

	#
n (x) ∼

√
anx

n
�C

an

n2 , x ∈
[
0,

an

n2

]
. (3.8)

Then (1.21) gives

I1 �C
an

n2 ‖ (P ′W
)
(x) x�‖Lp(I) �C‖ (PW) (x) x�‖Lp(I).

Next, by (3.8) and then (2.10), for x ∈ [
0, ann

−2
]
,

Q′ (x) 	#
n (x) �C

n√
anx

√
anx

n
= C.

So

I2 �C‖ (PW) (x) x�‖Lp(I).
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Thus we have shown that

‖ (PW)′ (x) 	#
n (x) x�‖Lp(0,ann−2)�C‖ (PW) (x) x�‖Lp(I).

This and Theorem 3.2 give the result. �

4. Estimation of A#
n,�(x)

We now estimate the function

A#
n,�(x) = 2

x

∫
I

(pn,�W�)2(t)Q(x, t) dt,

where

Q(x, t) = xQ′(x) − tQ′(t)
x − t

.

It plays a key role in estimation of pn,� (x). Using our bound (1.10) for pn,� we shall prove:

Theorem 4.1. Assume that W ∈ L (
C2+)

, that � > − 1
2 and let L > 1. Then ∃C, n0 > 0

such that for n�n0 and x ∈ [ann
−2/L, an(1 + L�n)],

A#
n,�(x) ∼ 	n(x)−1 [x (

an(1 + 2L�n) − x
)]−1/2

. (4.1)

If we assume instead that W ∈ L (
C2

)
, this holds with ∼ replaced by �C.

Proof of the upper bound in (4.1). We fix M > 1, ε ∈ (
0, 1

2

)
and set

Jn :=
[ an

Mn2 , εan

]
.

We assume, as in [3, Eq. (8.18)] that M is large enough so that

xnn,� >
an

Mn2 .

Let, as in [3, Eqs. (8.20)–(8.21)],

�n(x) := (pn,�W)2(x)
(
x + an

n2

)2� ∣∣∣(x + an

n2

)
(an − x)

∣∣∣1/2

and

�n(x) := A#
n,�(x)	n(x)|x(an − x)|1/2.

We distinguish two ranges of x:
(I) Upper bounds for x ∈ [ann

−2/M, εan]
We note that for this range of x,

x
(
an(1 + 2L�n) − x

) ∼ x (an − x)
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with constants in ∼ independent of n and x. Then

A#
n,�(x)	n(x)

[
x
(
an(1 + 2L�n) − x

)]1/2 ∼ �n(x).

By Lemma 8.6 in [3], for some ε > 0,

‖�n‖L∞(Jn) �C + ‖�n‖L∞(I ) �C1,

by (1.10). So choosing M �L, we have the upper bound implicit in (4.1) for this range
of x.

(II) Upper Bounds for x ∈ [
εan, an(1 + L�n)

]
Write

an(1 + 2L�n) = am

so that

1 − an

am

∼ �n.

We choose m in this way to ensure that for some small enough �, � and large enough n,[
�amm−2, am

(
1 − ��m

)] ⊇ [
εan, an

(
1 + L�n

)]
. (4.2)

By (2.8) and (2.7),

1 − n

m
∼ T (an)

(
1 − an

am

)
∼ T (an) �n → 0, (4.3)

as n → ∞. Moreover, for x ∈ [
0, an

(
1 − �n

)]
, we have

|am − x| ∼ |an − x|
so (1.10) gives the bound

∣∣pn,� (x) W (x)
∣∣ (x + an

n2

)� |x (am − x)|1/4 �C. (4.4)

By our restricted range inequality Lemma 2.4(a), this then holds throughout I. We split

A#
n,� (x) = 2

x

[∫ ann−2

0
+
∫ am

ann−2
+
∫ a2n

am

+
∫ d

a2n

] (
pn,�W�

)2
(t) Q (x, t) dt

=: I1 + I2 + I3 + I4.

Estimation of I1
For t ∈ [

0, ann
−2

]
, the monotonicity of uQ′ (u) gives

Q(x, t)�CQ′ (x)
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so our bound (1.10) on pn,� gives

I1 � C
Q′ (x)

x

∫ ann−2

0

1√(
t + ann−2

)
(an − t)

(
t

t + ann−2

)2�

dt

� C
Q′ (x)

xn

∫ 1

0

1√
s + 1

(
s

s + 1

)2�

ds,

where we made the substitution t = ann
−2s. Then from Lemma 2.3(d), (e) and (2.10)

I1	n(x)
[
x
(
an(1 + 2L�n) − x

)]1/2

� C

xn

n√
x(a2n − x)

x(a2n − x)

n
�C.

Estimation of I2
Our bound (4.4) on pn,� gives

I2 � C

an

∫ am

0

Q(x, t)√
t (am − t)

dt � C

an

√
x

am − x
�m (x) ,

where

�m (x) = 1

�2

√
am − x

x

∫ am

0

Q(x, t)√
t (am − t)

dt

is the density of the equilibrium measure of total mass m for the field Q. It is shown in [3,
(4.10)] that

�m (x) ∼ 	−1
m (x) in

[
�amm−2, am

(
1 − ��m

)]

for any fixed �, � > 0, so

I2 � C√
am (am − x)

	−1
m (x) .

Here �m ∼ �n. Now for small enough �, �, we saw at (4.2) that this last range contains[
εan, an(1 + L�n)

]
, while Lemma 2.3(b) and (4.3) show that 	m ∼ 	n. Then

I2	n (x)
[
x
(
an(1 + 2L�n) − x

)]1/2

�CI2	m (x) [x (am − x)]1/2 �C.
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Estimation of I3
Suppose first x ∈ [

aεn, an(1 + L�n)
]
.

For t ∈ [an, a2n] there exists s ∈ [εan, a2n] such that

Q(x, t) = (
uQ′ (u)

)′
|u=s

= sQ′′ (s) + Q′ (s) .

Here by (1.5),

sQ′′ (s) �C
sQ′ (s)2

Q (s)
= CT (s) Q′ (s)

and as T is bounded below, while sQ′ (s) is increasing, we see that

Q(x, t)�CT (s) Q′ (s) �CT (a2n) Q′ (a2n) �C
n

an

T (an)
3/2 ,

recall (2.3). Then

I3 � C
n

a2
n

T (an)
3/2

∫ a2n

am

dt√
t (t − an)

� C
n

a
5/2
n

T (an)
3/2 (a2n − an)

1/2 �C
nT (an)

a2
n

.

Then (2.19) gives

I3	n (x)
[
x
(
an(1 + 2L�n) − x

)]1/2 �C.

If instead x ∈ [εan, aεn], we instead use (2.18) and

Q(x, t)� (a2nQ
′(a2n))

am − x

Estimation of I4
Next,

I4 � C

an

∫ d

a2n

(pn,�W�)2(t)
tQ′ (t)
t − x

dt

� C

an (a2n − an (a2n − x))

∫ d

a2n

(pn,�W�)2(t)tQ′ (t) dt

� Cn′

a2n − x
,

by the identity∫
I

tQ′ (t)
(
pn,�W�

)2
(t) dt = n + � + 1

2
. (4.5)

The latter follows by integrating by parts and using orthogonality. Using (2.19) or (2.18)
again, we obtain

I4	n (x)
[
x
(
an(1 + 2L�n) − x

)]1/2 �C.
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Finally combining the estimates for I1, I2, I3, I4 gives

A#
n,�(x)	n (x)

[
x
(
an(1 + 2L�n) − x

)]1/2 �C. �

In proving the lower bounds for A#
n,�, we need an estimate related to the identity (4.5):

Theorem 4.2. Let W ∈ L (
C2

)
. There exists � > 1 such that uniformly for r ∈ [0, 2n]∫

[0,a2n]\[ar/�,a�r ]
(pn,�W�)2 (t) tQ′ (t) dt ∼ n. (4.6)

Proof. We use (4.5) and show that the integrals over [a2n, d) and
[
ar/�, a�r

]
are small.

Write

� = � + j

where ��0 and j is a non-negative integer. Then∫ d

a2n

(pn,�W�)2 (t) tQ′ (t) dt � 1

2
a

2�
2n

∫ d

a2n

P (t)
d

dt

(
−W 2 (t)

)
dt,

where

P (t) = p2
n,� (t) t1+2j .

Integrating by parts gives∫ d

a2n

P (t)
d

dt

(
−W 2 (t)

)
dt =

(
PW 2

)
(a2n) +

∫ d

a2n

P ′ (t) W 2 (t) dt.

Because of our bounds on pn,�, we know that in
[
0, an

(
1 − �n

)]
, |P | W 2 is bounded by a

power of n (recall an is of polynomial growth). Our restricted range inequality then shows
that it is bounded in I by a power of n and moreover Lemma 2.4(b) gives that for some
C > 0,(

PW 2
)

(a2n) = O(e−nC

).

Our Markov–Bernstein inequality Theorem 1.6 then shows that P ′W 2 is bounded by a
power of n in I. The same is then true of the L1 norm of P ′W 2 over [0, a2n]. Another
application of our restricted range inequalities to the weight W 2 (rather than W) shows that
(at least for large enough n),∫ d

a2n

P ′ (t) W 2 (t) dt = O
(
e−nC

)
.

So ∫ d

a2n

(pn,�W�)2 (t) tQ′ (t) dt = O
(
e−nC

)
.
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In view of (4.5), it now suffices to show that given � > 0, there exists � ∈ (1, 3
2 ] such that

uniformly for r ∈ [0, 2n],

I =
∫ a�r

ar/�

(pn,�W�)2 (t) tQ′ (t) dt ��n. (4.7)

We note first that it is an easy consequence of (2.8) and (2.5) that

a�r − ar/� �C
ar

T (ar)

(
� − 1

�

)
(4.8)

with C independent of r, �, since � ∈ [1, 3
2 ]. Moreover, by our bound (1.10) on pn,�, and

by (2.5),

I �C

∫ a�r

ar/�

tQ′(t)√
t |an − t | dt �Ca

1
2
r Q′(ar)

∫ a�r

ar/�

dt√|an − t | .

If a�r �an, we continue this as

I � Ca
1
2
r Q′(ar)

∫ a�r

ar/�

dt√
a�r − t

�Ca
1
2
r Q′(ar)

√
a�r − ar/�

� Cr

(
� − 1

�

)1/2

�Cn (� − 1)1/2 ,

by (4.8) and (2.3). If a�/r > an, we similarly continue this as

I �Ca
1
2
r Q′(ar)

∫ a�r

ar/�

dt√
t − ar/�

�Cn (� − 1)1/2 .

If a�r > an > a�/r , we continue this as

I �Ca
1
2
r Q′(ar)

√
a�r − ar/� �Cn (� − 1)1/2 .

In summary, in all cases, if � is close enough to 1, we obtain (4.7). �

Proof of the Lower Bounds for A#
n,�(x). Let us write x = ar for x ∈ [

ann
−2/L ,

an

(
1 + L�n

)]
. By Lemma 2.2(d), for t ∈ [0, a2n]\[ar/�, ar�],

Q(x, t)� C

|x − t | max
{
tQ′ (t) , xQ′ (x)

}
� CtQ′(t)

a2n − x
.

Note that while (2.11) holds for t in a neighbourhood omitting 0, the last inequality is valid
for n�n0 for all x ∈ [0, an(1 + L�n)] (that is, even for x, t near 0). Then

1

x

∫ d

0
(pn,�W�)2(t)Q(x, t) dt

� C

x (a2n − x)

∫
[0,a2n]\[ar/�,a�r ]

(pn,�W�)2 (t) tQ′ (t) dt

�C
n

x(a2n − x)
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by (4.6). So

A#
n,�(x)�C

n

x

1

a2n − x
. (4.9)

Firstly if x ∈ [ann
−2, an/2], Lemma 2.3(d) gives as a2n − x ∼ an − x,

A#
n,�(x)	n(x)[x (

an

(
1 + 2L�n

) − x
)]1/2 �C. (4.10)

Thus we obtain a lower bound to match the upper bound for A#
n,� that we have already

proven. Next, if x ∈ [an/2, an(1 + L�n)], we obtain from (4.9) that at least for large n,

A#
n,�(x)�C

n

(a2n − an/2)an

∼ nT (an)

a2
n

so Lemma 2.3(e) gives (4.10) again. �

5. The proof of Theorems 1.2 and 1.3(a), (b)

In the sequel, we shall need Christoffel functions,

�n

(
W 2

� , x
)

= inf
deg(P )�n−1

∫
I

(
PW�

)2

P 2 (x)
,

the Christoffel numbers

�jn = �n

(
W 2

� , xjn

)
and the reproducing kernel

Kn,� (x, t) =
n−1∑
j=0

pj,� (x) pj,� (t) .

Lemma 5.1. Let W ∈ L (
C2

)
.

(a)

�−1
jn = �n−1,�

�n,�
p′

n,�(xjn)pn−1,�(xjn), (5.1)

p′
n,�(xjn) = �n−1,�

�n,�
A#

n,�(xjn)pn−1,�(xjn). (5.2)

(b)

�n

(
W 2

� , x
)

∼ 	n (x) W 2 (x)
(
x + an

n2

)2�
in

[
0, an

(
1 + L�n

)]
(5.3)

and

�n

(
W 2

� , x
)

�C	n (x) W 2 (x)
(
x + an

n2

)2�
in I. (5.4)
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(c)

1 − x1n

an

∼ �n and xnn ∼ an

n2 (5.5)

and uniformly in j, n,

xjn − xj+1,n �C	n

(
xjn

)
. (5.6)

Proof. (a) See [3, (8.5) and Lemma 8.3].
(b) See [3, Theorem 1.3].
(c) See [3, Theorem 1.4]. �

Next, we prove the upper bound implicit in (1.8).

Lemma 5.2. Let W ∈ L (
C2

)
.

(a) For n�1,

sup
x∈I

(
pn,�W

)
(x)

(
x + an

n2

)�
�C

√
n

an

; (5.7)

(b) For n�1,

�n−1,�

�n,�
∼ an. (5.8)

Proof. (a) Now for x ∈ [
ann

−2, an

(
1 − �n

)]
, and for large enough n, (1.10) gives∣∣pn,� (x) W (x)

∣∣ x� � C

[x (an − x)]1/4

� C max

{
1

a2
nn

−2 ,
1

a2
n�n

}1/4

= Ca
−1/2
n max

{
n1/2, (nT (an))

1/6
}

�Ca
−1/2
n n1/2,

by (2.6). Then the restricted range inequality Lemma 2.4(c) gives (5.7).
(b) The ideas are standard, but we provide the details. Firstly, from our restricted range

inequality and Cauchy–Schwarz,

�n−1,�

�n,�
=

∫
I

xpn,� (x) pn−1,� (x) W 2
� (x) dx�Can.

We proceed to prove a corresponding lower bound. From Definition (1.12) of 	n,

	n (x) ∼ an

n
, x ∈

[
1

4
an,

1

2
an

]
. (5.9)

Then for xjn, xj−1,n ∈ [ 1
4an,

1
2an

]
, Lemma 5.1(c) ensures that

xj−1,n − xjn �C
an

n
.
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Here C is independent of j and n. It then follows that for large enough n, the number of
zeros of pn,� lying in this interval is at least �C1n. (We only have to show that

[ 1
4an,

1
2an

]
contains at least one zero. If not, we easily obtain a contradiction using Lemma 5.1(c).)
Recall from Lemma 5.1(a), the identities

�−1
jn = �n−1,�

�n,�
pn−1,�

(
xjn

)
p′

n,�
(
xjn

) =
(

�n−1,�

�n,�
pn−1,�

(
xjn

))2

A#
n,�

(
xjn

)
.

Applying our bound of Theorem 4.1 on A#
n,� and also (5.9) gives for xjn ∈ [ 1

4an,
1
2an

]
,

(
�n−1,�

�n,�

)−2

�C�jnp
2
n−1,�

(
xjn

) n

a2
n

.

Adding over the �C1n zeros xjn ∈ [ 1
4an,

1
2an

]
gives

C1n

(
�n−1,�

�n,�

)−2

� C
n

a2
n

∑
xjn∈

[
1
4 an, 1

2 an

] �jnp
2
n−1,�

(
xjn

)

� C
n

a2
n

∫
I

p2
n−1,�W 2

� = C
n

a2
n

.

Here we have used the Gauss quadrature formula. Hence

�n−1,�

�n,�
�Can. �

Proof of Theorem 1.3(a), (b). We use (5.1) and (5.2) in the form

�−1
jn = �n−1,�

�n,�
p′

n,�(xjn)pn−1,�(xjn) = p′
n,�(xjn)

2/A#
n,�(xjn) (5.10)

so that

|p′
n,�W�|(xjn) = [�−1

jn W 2
� (xjn)A

#
n,�(xjn)]1/2.

Substituting the upper bounds for A#
n,�(xjn) from Theorem 4.1 and the lower bounds for

�jn from Lemma 5.1(b) in this last expression gives the upper bounds for |p′
n,�W�|(xjn)

that are implicit in (1.13). We also use (5.5). When W ∈ L (
C2+)

we also have matching
lower bounds for A#

n,�, so we obtain ∼ relations for |p′
n,�W�|(xjn). The identity (5.10)

above, in the form

|pn−1,�W�|(xjn) = �−1
jn W 2

� (xjn)

/[
�n−1,�

�n,�
|p′

n,�W�|(xjn)

]

and the previous lemma then gives the required estimates for |pn−1,�W�|(xjn). �
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Proof of Theorem 1.2. We already proved the upper bound implicit in (1.8) in Lemma
5.2. For the corresponding lower bound, we use our Markov–Bernstein inequality Theorem
3.2 in the form

|(p′
n,�W�)(xnn)	

#
n(xnn)| = |(pn,�W)′(xnn)	

#
n(xnn)x

�
nn|

� C max
x∈[ann−2,an]

| (pn,�W
)
(x) x�|.

Recall that xnn ∼ ann
−2, so Theorem 3.2 is applicable. Substituting the bound (1.13) for

|p′
n,�W�|(xnn) proved above and using 	#

n (xnn) ∼ 	n (xnn) gives

max
x∈[ann−2,an]

|pn,�W�|(x)�C

√
n

an

.

Thus we have (1.8). For (1.9), observe from (1.10) that∣∣xpn,� (x) W� (x)
∣∣ �Cx3/4 (an − x)−1/4 , x ∈

[
ann

−2, an

(
1 − �n

)]
.

Maximizing the right-hand side over this interval gives∣∣∣∣pn,� (x) W (x)
(
x + an

n2

)�+1
∣∣∣∣

�2
∣∣∣xpn,� (x) W (x)

(
x + an

n2

)�∣∣∣ �Ca
1/2
n (nT (an))

1/6 ,

and then our restricted range inequality Lemma 2.4(a) shows that

sup
x∈I

∣∣∣∣pn,� (x) W (x)
(
x + an

n2

)�+1
∣∣∣∣ �Ca

1/2
n (nT (an))

1/6 . (5.11)

Moreover, the bound (1.10) gives

max
x∈[0,a�n]

∣∣∣xpn,� (x) W (x)
(
x + an

n2

)�∣∣∣ � Ca
3/4
n

(
an − a�n

)−1/4

� Ca
1/2
n T (an)

1/4

= o
(
a

1/2
n (nT (an))

1/6
)

, (5.12)

by (2.6). Next, our Markov–Bernstein inequality Theorem 3.2 gives

|x1n(p
′
n,�W�)(x1n)	n(x1n)| = |(pn,�W)′(x1n)	n(x1n)x

1+�
1n |

� C max
x∈[ann−2,an]

| (pn,�W
)
(x) x1+�|.

Substituting in the bounds for |p′
n,�W�|(x1n) from (1.13), and using

an − x1n ∼ an�n

gives

max
x∈[ann−2,an]

|xpn,�W�|(x)�Ca
1/2
n (nT (an))

1/6 .

Combining this, (5.11) and (5.12) gives (1.9). �



E. Levin, Doron Lubinsky / Journal of Approximation Theory 139 (2006) 107–143 135

6. Lagrange interpolation polynomials

In this section, we prove Theorems 1.3(c), (d) and 1.4. The most difficult part is the upper
bound implicit in (1.15), namely,

�jn(x) := |�jnW |(x)
(
x + an

n2

)�
W−1

� (xjn)�C (6.1)

with C independent of j, n, x. Since

�jn(xjn) =
(

xjn + an

n2

xjn

)�

∼ 1,

(1.15) follows from (6.1). We begin with two independent bounds for �jn. We shall use the
notation

�n(x) := x(an(1 + �n) − x). (6.2)

Lemma 6.1. Assume that W ∈ L (
C2

)
and � > − 1

2 . Uniformly in j, n and x ∈ I ,

(a)

�jn(x)�C

(
	n(xjn)

	n(x)

)1/2

; (6.3)

(b)

�jn(x)�C
	n(xjn)∣∣x − xjn

∣∣
∣∣∣∣�n(xjn)

�n(x)

∣∣∣∣1/4

. (6.4)

Proof. (a) We use the Cauchy–Schwarz inequality on the identity

�jn(x) = Kn,�(x, xjn)/Kn,�(xjn, xjn)

to deduce

|�jnW |(x)W−1
� (xjn)

�
(

Kn,�(x, x)W 2(x)

Kn,�(xjn, xjn)W 2
� (xjn)

)1/2

=
(

�−1
n (W�, x)W 2(x)

�−1
n (W�, xjn)W 2

� (xjn)

)1/2

.

Applying the Christoffel function bounds (5.3) and (5.4) to �jn (x) gives the result.
(b) By our bounds for pn from (1.10),

|pn,�W |(x)
(
x + an

n2

)�
�C|�n(x)|−1/4. (6.5)

Substituting this and the bounds for |p′
n,�W�|(xjn) from (1.13) into

|�jnW |(x)
(
x + an

n2

)�
W−1

� (xjn) = |pn,�W |(x)

|x − xjn||p′
n,�W�|(xjn)

(
x + an

n2

)�
(6.6)

gives the result. �



136 E. Levin, Doron Lubinsky / Journal of Approximation Theory 139 (2006) 107–143

We shall also find the following simple observation useful:

Lemma 6.2. There exists n0 such that for n�n0 and s, t ∈ [0, an],

|�n(s)|�2|�n(t)| ⇒ |s − t |� |�n(s)|
4an

. (6.7)

Proof. Now for x ∈ [0, an],
|�′

n(x)| = |an

(
1 + �n

) − 2x|�2an

for n large enough, so if s, t are as above, then for some 
 between s, t

1
2 |�n(s)|� |�n(s) − �n(t)| = |�′

n(
)||s − t |�2an|s − t |. �

We break down the proof of (6.1) into two lemmas, considering various ranges of xjn.

Lemma 6.3. For xjn ∈ [0, an/2] and x ∈ I ,

�jn(x)�C. (6.8)

Proof. We prove the upper bound for �jn(x) separately for two ranges of x ∈ [
ann

−2 ,
an

(
1 − �n

)]
. (Then the result follows for all x from the restricted range inequality Lemma

2.4(c).) From Lemma 2.3(d), uniformly in j and n,

	n(xjn) ∼ �n(xjn)
1/2/n. (6.9)

(Recall that xnn �Cann
−2.) We shall substitute this and relevant estimates for 	n(x) in

(6.3) and (6.4).
(I) x ∈ [ann

−2, a3n/4]
From Lemma 2.3(d),

	n(x) ∼ �n(x)1/2/n.

Then our bound (6.3) becomes

�jn(x)�C

(
�n(xjn)

�n(x)

)1/4

.

If �n(xjn)�2�n(x), we obtain the desired bound. In the contrary case, where �n(xjn) >

2�n(x), the previous lemma gives

|x − xjn|� |�n(xjn)|
4an

(6.10)

so (6.4) becomes, with the aid of (6.9),

�jn(x)�C
an

n
[�n(x)�n(xjn)]−1/4 �C

an

n
�n(x)−1/2 �C,

as �n attains its minimum over [ann
−2, a3n/4] at ann

−2, and that minimum ∼ a2
nn

−2.
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(II) x ∈ [a3n/4, an

(
1 − �n

)]
For this range of x, Lemma 2.3(e) gives

	n(x) ∼ �n(x)−1/2 a2
n

nT (an)
.

Moreover,

�n(x) ∼ an

(
an(1 + �n) − x

)
�an(an(1 + �n) − a3n/4)

so

�n(x)�C1
a2
n

T (an)
.

(Recall (2.9) and that �n = o(1/T (an)).) Then if

�n(xjn)�2C1
a2
n

T (an)

we obtain from (6.3) and (6.9) that

�jn(x)�C

(
�n(xjn)

1/2�n(x)1/2 T (an)

a2
n

)1/2

�C2.

In the contrary case, where

�n(xjn) > 2C1
a2
n

T (an)
�2�n (x) ,

the previous lemma gives (6.10) again, and hence as above, (6.4) gives

�jn(x)�C
an

n
[�n(x)�n(xjn)]−1/4.

Now for the current range of x, we have as usual,

�n(x)� min
{
�n

(
a3n/4

)
, �n

(
an

(
1 − �n

))} ∼ a2
n�n,

so

�jn (x) �C
an

n

[
a2
n�n · a2

n

T (an)

]−1/4

= C

[
T (an)

n2

]5/12

�C,

by (2.6). �

Lemma 6.4. For xjn ∈ [an/2, d) and x ∈ I ,

�jn(x)�C. (6.11)
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Proof. Recall that for some M > 0 and large enough n, x1n �an(1 − M�n). Then for
xjn �an/2, Lemma 2.3(e) shows that

	n(xjn) ∼ �n(xjn)
−1/2 a2

n

nT (an)
. (6.12)

We shall substitute this and relevant estimates for 	n(x) in (6.3) and (6.4), for two different
ranges of x.

(I) x ∈ [ann
−2, an/4]

From Lemma 2.3(d),

	n(x) ∼ �n(x)1/2/n.

Moreover,

|x − xjn|�an/2 − an/4 � Can

T (an)
.

From (6.4),

�jn(x)�C
an

n
[�n(x)�n(xjn)]−1/4.

Here

�n(xjn)�Ca2
n�n,

�n(x)�C
a2
n

n2 .

Then we obtain

�jn(x)�C

{
T (an)

n2

}1/6

�C

by (2.6).
(II) x ∈ [an/4, an

(
1 − �n

)]
For this range of x, Lemma 2.3(d) gives

	n(x) ∼ �n(x)−1/2 a2
n

nT (an)
.

Here (6.3) becomes

�jn(x)�C

(
�n(x)

�n(xjn)

)1/4

.

If �n(x)�2�n(xjn), the result follows. In the contrary case, Lemma 6.2 gives

|x − xjn|� �n(x)

4an
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so (6.4) becomes

�jn(x)� C

�n(x)5/4�n(xjn)1/4

a3
n

nT (an)
� C

(a2
n�n)

3/2

a3
n

nT (an)
�C,

by definition of �n. �

With the proof of (6.1), and hence Theorem 1.3(c) complete, we turn to an auxiliary result
for Theorem 1.3(d):

Lemma 6.5. Let W ∈ L (
C2

)
. Uniformly in j, n and for x ∈ [

xj+1,n, xjn

]
,

(�jnW�)(x)W−1
� (xjn) + (�j+1,nW�)(x)W−1

� (xj+1,n) ∼ 1. (6.13)

Proof. From [3, Lemma 7.5], for x ∈ [xj+1,n, xjn]
(�jnW)(x)W−1(xjn) + (�j+1,nW)(x)W−1(xj+1,n)�1.

Note that uniformly in j and n,

xj+1,n ∼ xjn. (6.14)

Indeed from (5.6) and then (2.20), (1.18) and (2.17),

0� xjn − xj+1,n

xj+1,n

�C
	n

(
xjn

)
xj+1,n

∼ 	n

(
xj+1,n

)
xj+1,n

∼ 	#
n

(
xj+1,n

)
xj+1,n

�C.

So we have (6.14) and hence

(�jnW�)(x)W−1
� (xjn) + (�j+1,nW�)(x)W−1

� (xj+1,n)�C.

The corresponding upper bound follows from Theorem 1.3(c). �

Proof of Theorem 1.4. We already know from Lemma 5.1 that uniformly in j, n

xjn − xj+1,n �C	n(xj+1,n)

and must prove the corresponding lower bound. First note from our Markov–Bernstein
inequality Theorem 3.2 and since 	n ∼ 	#

n in [xnn, d) that

‖(�jnW)′ (x) 	n (x) x�‖L∞[xnn,d)W
−1
� (xjn)

�C‖ (�jnW
)
(x) x�‖L∞[ann−2,an]W

−1
� (xjn)�C1

with C1 independent of j, n. Then for some 
 between xjn and xj+1,n,

1 = (�jnW)(xjn)W
−1(xjn) − (�jnW)(xj+1,n)W

−1(xjn)

= (�jnW)′(
)W−1(xjn)(xjn − xj+1,n)

� C	n(
)−1
−�x
�
jn(xjn − xj+1,n).
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Since Lemma 2.3(f) shows that

	n(xjn) ∼ 	n(
) ∼ 	n(xj+1,n) and xjn ∼ 


(cf. (6.14)) we obtain the required lower bound. �

Proof of Theorem 1.3(d). From Lemma 6.5, for x ∈ [xj+1,n, xjn], (and recall, if neces-
sary, the expression (6.6) for �jn)

|pn,�W�|(x)

{
1

|x − xjn||p′
n,�W�|(xjn)

+ 1

|x − xj+1,n||p′
n,�W�|(xj+1,n)

}
∼ 1.

(6.15)

Now we know from Lemma 2.3 that

	n

(
xjn

) ∼ 	n

(
xj+1,n

)
.

We also claim that uniformly in j and n,

an − xjn ∼ an − xj+1,n. (6.16)

Once we have this claim, Theorem 1.3(a) and (6.14) give

|p′
n,�W�|(xjn) ∼ |p′

n,�W�|(xj+1,n)

so we obtain

|pn,�W�|(x) ∼ |p′
n,�W�|(xjn)

{
1

|x − xjn| + 1

|x − xj+1,n|
}−1

∼ |p′
n,�W�|(xjn) min{|x − xjn|, |x − xj+1,n|}.

Substituting in (1.13), gives (1.16). We turn to the proof of (6.16): from (5.6),

0�1 − an − xjn

an − xj+1,n

= xjn − xj+1,n

an − xj+1,n

�C
	n

(
xj+1,n

)
an − xj+1,n

.

If xj+1,n �an/2, we continue this using (2.18) as

�C

√
xj+1,n

n

(
an − xj+1,n

)−1/2 �C

√
xj+1,n

n

√
T (an)

an

�C.

If xj+1,n > an/2, we continue this using (2.19) as

� C(
an − xj+1,n

)3/2

a
3/2
n

nT (an)
� C(

an�n

)3/2

a
3/2
n

nT (an)
= C. �
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7. Sharpness of the Markov inequality

We prove the sharpness of the Markov inequality (1.21) in L2 and with � = 0:

Theorem 7.1. Let {pn} denote the orthonormal polynomials for the weight W 2, where
W ∈ L (

C2+)
. Then for n�1,

‖p′′
nW‖L2(I ) ∼ n2

an

‖p′
nW‖L2(I ). (7.1)

Proof. By the Gauss quadrature formula, and then (1.13) and (5.3), followed by (1.12),

‖p′
nW‖2

L2(I ) =
n∑

j=1

�jnp
′
n

(
xjn

)2

∼
n∑

j=1

	−1
n

(
xjn

) [
xjn

(
an − xjn

)]−1/2

∼ n

n∑
j=1

1

xjn

(
a2n − xjn

)
= n

a2n

n∑
j=1

(
1

xjn

+ 1

a2n − xjn

)
=: �1 + �2. (7.2)

Here

�1 = − n

a2n

p′
n (0)

pn (0)
.

By our Markov inequality (1.21) and our bound (1.8) on pn,

∣∣p′
n (0)

∣∣ �C
n2

an

‖pnW‖L∞(I ) �C
n5/2

a
3/2
n

,

while as |pn| is convex in (−∞, xnn),

|pn (0)| �
∣∣p′

n (xnn)
∣∣ xnn ∼

√
n

an

,

by (1.13) and (5.5). Then

|�1| �C
n3

a2
n

.

In the other direction, we can use just a single term in �1:

�1 � n

a2n

1

xnn

∼ n3

a2
n

.
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Thus

�1 ∼ n3

a2
n

. (7.3)

Next, we estimate �2. Let

x0n = x1n + an�n.

By our spacing of zeros, namely (1.17),

�2 ∼ n

an

n∑
j=1

(
xj−1,n − xjn

) 	−1
n

(
xjn

)
a2n − xjn

� C
n

an

∫ x0n

0

dx

	n (x) (a2n − x)
,

recall (2.20). We continue thus using (1.12) as

�2 ∼ n2

an

∫ x0n

0

√
a2n − x + an�n

(a2n − x)2

dx√
x + ann−2

� C
n2

an

⎡
⎢⎢⎣

a
−3/2
n

∫ 1
2 an

0
dx√

x + ann−2
+ a

−1/2
n

∫ an/2
1
2 an

dx

(an − x)3/2

+a
−1/2
n

∫ x0n

an/2

√
a2n − an/2

(a2n − x)2 dx

⎤
⎥⎥⎦

� C
n2

an

[
a−1
n + a

−1/2
n

(
an − an/2

)−1/2 + a
−1/2
n

√
a2n − an/2

a2n − an

]

� C
n2

a2
n

T (an)
1/2 = o

(
n3

a2
n

)
.

Here we have used (2.9) and (2.6). This last relation, (7.2) and (7.3) give

‖p′
nW‖2

L2(I ) ∼ n3

a2
n

. (7.4)

Now we obtain a lower bound for the norm of p′′
nW . As p′

n has opposite sign at xnn and
xn−1,n, and W−1 is bounded near 0,∣∣p′

n (xnn)
∣∣ <

∣∣p′
n (xnn) − p′

n

(
xn−1,n

)∣∣ =
∣∣∣∣
∫ xn−1,n

xnn

p′′
n

∣∣∣∣
� C

(
xn−1,n − xnn

)1/2
(∫ xn−1,n

xnn

(
p′′

nW
)2
)1/2

< C
(
xn−1,n − xnn

)1/2 ‖p′′
nW‖L2(I )

so

‖p′′
nW‖2

L2(I ) > C
∣∣p′

n (xnn)
∣∣2 (xn−1,n − xnn

)−1

� C	n (xnn)
−3 (xnnan)

−1/2 ∼ n7a−4
n ,
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by (1.13), (1.17) and (1.12). This and (7.4) give

‖p′′
nW‖2

L2(I )/‖p′
nW‖2

L2(I ) �Cn4a−2
n ,

that is,

‖p′′
nW‖L2(I ) �C

n2

an

‖p′
nW‖2

L2(I ).

The converse direction is an immediate consequence of the Markov inequality (1.21). �
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